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KELLER VANDEBOGERT

1. Chapter 1, Problem 1

1. The Eikonal equation is first order and fully nonlinear.

2. The Nonlinear Poisson equation is second order semilinear.

3. The p-Laplacian is second order quasilinear. To see this, use the

product rule:

∇ · (|Du|p−2Du) = ∇(|Du|p−2) ·Du+ |Du|p−2∆u

4. The Minimal Surface equation is second order quasilinear. Again,

use the product rule:

∇ ·
( Du

(1 + |Du|2)1/2
)

= ∇
( 1

(1 + |Du|2)1/2
)
·Du+

( 1

(1 + |Du|2)1/2
)

∆u

5. The Monge Ampere equation is second order fully nonlinear.

6. The Hamilton Jacobi Equation is first order fully nonlinear.

7. The Scalar Conservation law will in general be first order and fully

nonlinear, depending on the properties of F(u).

8. The Inviscid Burger’s equation is first order quasilinear.

9. The Scalar reaction-diffusion equation is second order semilinear.
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10. The Porous Medium equation is second order quasilinear.

11. The nonlinear wave equation is second order semilinear.

12. The KdV equation is third order semilinear.

13. The Nonlinear Schrodinger equation is second order semilinear.

2. Chapter 1, Problem 5

Set g(t) := f(tx). Then, g′(t) = x · ∇f(tx) by the chain rule. By

induction we obviously have that g(n)(t) = (x ·∇)nf(tx), where x ·∇ :=

x1
∂
∂xi

+ . . . +xn
∂
∂xn

. Using Taylor’s formula with remainder for a single

variable, we see:

g(t) =
k∑
i=0

g(i)(0)ti

i!
+O(tk+1|x|k+1)

=
k∑
i=0

(x · ∇)if(0)ti

i!
+O(tk+1|x|k+1)

(2.1)

Now, note that g(1) = f(x), so that

f(x) =
k∑
i=0

(x · ∇)if(0)

i!
+O(|x|k+1)

Using the result of problem 3 of this chapter, we employ the multino-

mial theorem with yi = xi
∂
∂xi

to find:

(x · ∇)k =
∑
|α|=k

k!

α!
xαDα

And hence plugging this into our sum:
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f(x) =
k∑
i=0

∑
|α|=i

xαDαf(0)

α!
+O(|x|k+1)

=
∑
|α|≤k

xαDαf(0)

α!
+O(|x|k+1)

(2.2)

As desired.

3. Chapter 2, Problem 1

Multiply our equation by ect to find:

ectut + ectb ·Du+ cectu = (ectu)t + b ·D(ectu)

= 0
(3.1)

Set ectu := v. We see that v(x, 0) = g(x), and so following the method

of solution presented in 2.1, we have:

v(x, t) = g(x− tb) =⇒ u(x, t) = e−ctg(x− tb)

And for the nonhomogeneous case we can quickly find a solution:

v(x, t) = g(x− tb) +

∫ t

0

ecsf(x+ (s− t)b, s)ds

So that

u(x, t) = e−ctg(x− tb) +

∫ t

0

ec(s−t)f(x+ (s− t)b, s)ds

Which yields the result.


